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Abstract

A method for simulating moving impermeable boundaries within a fixed Cartesian mesh is described.
The scheme leverages the automated volume mesh generation process which has previously been demon-
strated for static geometries. An implicit dual-time method is used for the time advance, which limits
the number of times the geometry must be intersected with the Cartesian volume mesh over a com-
plete simulation. A general motion is decomposed into a rigid-body motion of the entire computational
domain, with a relative-body motion superimposed. The rigid-domain motion is treated using an ALE
formulation, which confines the required geometry processing only to the regions of relative motion
within the domain. A detailed space-time analysis is used to present and discuss the moving-boundary
scheme, with particular attention given to complexities arising in multiple dimensions. A hierarchy of
conservative approximations for the evolution of the moving geometry over a timestep is presented.
Preliminary results are discussed in one, two and three dimensions using CFL numbers based upon the
moving wall velocity of between 1 and 20.

1 Introduction

This work considers numerical simulation of
three-dimensional flows with moving boundaries.
Such problems pose a variety of challenges for nu-
merical schemes, and have received a substantial
amount of attention in the recent literature. Since
such simulations are unsteady, time-accurate solu-
tion of the governing equations is required. In spe-
cial cases, the body motion can be treated by a
uniform rigid motion of the computational domain.
For the more general situation of relative-body mo-
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tion, however, this simplification is unavailable and
the simulations require a mechanism for ensuring
that the mesh evolves with the moving boundaries.
This involves a “remeshing” of the computational
domain (either localized or global) at each physical
timestep, and places a premium on both the speed
and robustness of the remeshing algorithms. This
work presents a method which includes unsteady
flow simulation, rigid domain motion, and relative
body motion using a time-evolving Cartesian grid
system in three dimensions.

While 3-D moving-boundary simulations have
been performed on body-fitted structured and un-
structured grid systems for some time [1–4], the
literature on Cartesian methods has been largely
restricted to two dimensions and/or simplified con-
figurations. Early approaches to the 3-D Cartesian
moving-body problem included both the Volume of
Fluid (VOF) [5] and level-set approaches [6]. More
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recently, there has been interest in the immersed-
boundary [7–9] and cut-cell Cartesian approaches
[10–13]. Non-body-fitted, Cartesian approaches
like these are particularly interesting since they can
be made both extremely fast and robust [14]. More-
over, they are comparatively insensitive to the com-
plexity of the input geometry since the surface de-
scription is decoupled from the volume mesh, and
can therefore handle complex geometries with rel-
ative ease.

This work builds upon the inviscid, Cartesian
cut-cell solver in Ref. [15]. In this method, the
cells which are cut by the boundary geometry
can be arbitrarily small, making explicit update
schemes overly restrictive for time-dependent prob-
lems. Approaches to overcome this restriction usu-
ally either extend the difference stencil of the spa-
tial terms [16], or use a cell-merging approach [10],
so that cut-cells can be advanced with the ex-
plicit timestep of a full uncut cell. The coupling of
cell size and allowable timestep with explicit meth-
ods implies that the boundary motion will be re-
stricted by the size of the finest boundary inter-
secting Cartesian cell during a single timestep.

In a Cartesian moving-boundary scheme, the
most delicate operation is the re-intersection of the
body with Cartesian grid at each time step. Not
only is this the most computationally expensive
part of Cartesian mesh generation, but it requires
special procedures to ensure that the floating-point
intersection calculations are robust [14]. In a two
dimensional mesh with O(N2) cells, the bound-
ary geometry only intersects O(N) cells. In three
dimensions, however, the boundary is a surface
instead of a line and the number of intersection
calculations is squared with respect to the 2-D
case. Moreover, these intersection calculations are
higher-dimensional, and therefore each is more ex-
pensive and more difficult to compute robustly.
Arguments for both efficiency and robustness in
three dimensions weigh heavily in favor of mov-
ing the body as rarely as possible to minimize
the re-cutting of Cartesian cells. These arguments
are amplified in parallel-computing environments,
where mesh modifications often imply rebalancing
the load distributed to the various processors by
exchanging cells across subdomain boundaries.

Following this line of reasoning, the present work
adopts a fully-implicit temporal operator to de-
couple the timestep from the local mesh scale. It
leverages the same multigrid smoother used by the
steady-state solver [15] by embedding it in a dual-

time framework. The implicit approach means that
finer mesh simulations do not automatically require
more remeshings than coarse simulations. Simula-
tions proceed at a timestep dictated by the appro-
priate physics rather than stability constraints.

As noted earlier, special subclasses of arbitrary
body motion can be treated by rigid motion of
the entire domain. The current work imple-
ments a rigid domain motion within the Arbitrary
Lagrangian-Eulerian (ALE) formulation of Hirt et
al. [17]. In this Lagrangian framework, a single
transformation matrix can be applied to all the
faces in a Cartesian mesh, and since these faces all
have the same orientations, the transformation can
be inexpensively precomputed, stored and applied.

Relative boundary motion is superimposed on
top of the rigid domain motion using an adaptive
re-meshing strategy which does not rely on explicit
cell merging. Since the geometry moves relative
to the volume cells, this aspect of the implementa-
tion is Eulerian. A space-time analysis is used to
ensure conservation, and to develop a hierarchy of
approximations to the moving boundary. The ba-
sic analysis is presented in detail in 1-D, with the
complexity which arises when extending to multi-
ple dimensions also discussed. The final section
presents initial numerical results in one, two, and
three dimensions using the implicit, relative-motion
scheme, including comparison with analytic solu-
tions and experimental data.

2 Dual-time formulation

In order to leverage the infrastructure of the
steady-state flow solver outlined in Ref. [15], a dual-
time formulation (cf. Refs. [18, 19]) was developed
for the time-dependent scheme,

dQ
dτ

+ R∗ (Q) = 0

R∗ (Q) =
∂Q
∂t

+ R (Q)
(1)

where τ is referred to here as “pseudo-time”, and is
the iterative parameter, and t is the physical time.
Q is the vector of conserved variables, and R (Q)
is an appropriate numerical quadrature of the flux
divergence, 1

V

∮
S
f · ndS. As dQ

dτ → 0 the time-
dependent formulation is recovered. The multi-grid
smoother described in [15] is used to converge the
inner pseudo-time integration. An explicit, multi-
stage, pseudo-time-integration scheme is utilized to
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θ ξ φ Method Order
1 0 0 Backward Euler 1

1/2 0 0 Trapezoidal 2
1 1/2 0 2nd-order backward 2

3/4 0 -1/4 Adam’s type 2
1/3 -1/2 -1/3 Lee’s type 2
1/2 -1/2 -1/2 Two-step trapezoidal 2
5/9 -1/6 -2/9 A-contractive 2

Table 1: Partial list of A-stable, two- and three-level meth-
ods (Eqn. 2) from Beam and Warming [22].

converge the “inner loop” in Eqn. 1. This is similar
to the scheme outlined by Jameson [20], however,
the semi-implicit approach of Melson et al. [21] is
used here for the physical time-derivative term.

Various time-dependent schemes can be con-
structed for Eqn. 1 by appropriately discretizing
the time derivative. As noted in the Introduc-
tion, it’s desirable to utilize an unconditionally-
stable, implicit scheme to allow a large timestep
to be chosen based upon physical considerations
rather than a potentially smaller stability-limited
timestep. Beam and Warming [22] outline a fam-
ily of consistent time-dependent schemes that uti-
lize three time levels, Qn−1, Qn, Qn+1. These are
given by

R∗ (Q) =
(1 + ξ)Qn+1 − (1 + 2ξ)Qn + ξQn−1

∆t

+ θR
(
Qn+1

)
+ (1− θ + φ)R (Qn) (2)

− φR
(
Qn−1

)
Table 1 contains a partial list of the A-stable, three
time level methods that can be formulated using
Eqn. 2.

3 ALE formulation

In many applications with moving geometry, the
motion of the geometry can be decomposed into
a “uniform” rigid-body motion, with relative mo-
tion confined to a subset of the domain. Examples
include rotating airframes with dithering canards
[23], rotorcraft, or stage separation from space ve-
hicles. It’s desirable to simulate such a motion us-
ing a rigid-body motion of the entire computational
domain, and treat the relative motion within the
moving domain separately. This again limits the
amount of computational work that is required to
process the moving geometry.

An ALE formulation (cf. Hirt et al. [17]) was uti-
lized in order to account for the rigid-body motion
of the computational domain. This is accomplished
by modifying the flux through a boundary to ac-
count for the motion of the boundary. For the in-
viscid flux vector used here, this becomes

f · n =

 ρun

ρunu + pn
ρune + pu · n

 (3)

where
un = (u− uΩ) · n

is the velocity relative to the moving boundary, and
uΩ is the velocity of the moving domain. Hence the
convective part of the flux is modified to account
for the motion of the boundary, compared to the
treatment for a fixed domain.

A modified form of van Leer’s flux-vector split-
ting (FVS) [24] is used with the ALE formulation.
This modification generalizes the scheme by using
the Mach number relative to the moving boundary
when determining the characteristic speeds of the
system. Using the relative Mach number makes the
scheme Galilean invariant, so that simulations with
a static domain provide the same numerical results
as those which use a moving domain when comput-
ing the same physical problem. The subsonic flux
for van Leer’s FVS can be written as a combina-
tion of convective and acoustic terms (for a static
domain) as

f̂± ·n = M±
n

 ρc
ρcu
ρcH

±M±
n (2∓Mn)

 0
pn
0


∓ γ

γ − 1
M±

n (2∓Mn)2

 0
0
pc

 (4)

where Mnc = u · n and M±
n = ± 1

4 (1±Mn)2.
The numerical flux across a boundary which sep-
arates two domains (left and right) then becomes
f̂(QL,QR) = f̂+(QL) + f̂−(QR).

With an ALE formulation, the Mach number rel-
ative to the moving boundary is Mnc = (u− uΩ) ·
n. If this relative Mach number is simply substi-
tuted into van Leer’s FVS when computing on a
moving domain, the energy equation will not be
consistent, in the sense of f̂(Q,Q) = f(Q). This
is due to combining the total energy and pressure
work terms into the total enthalpy H in the numer-
ical energy flux in Eqn. 4. Physically, the pressure
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work due to the domain motion (puΩ) is identically
zero, hence this term does not appear in the energy
flux in Eqn. 3.

A modified form of van Leer’s FVS was devel-
oped for the ALE scheme. The mass and momen-
tum flux are unmodified from the original form,
only the energy flux is changed. Examining the
energy flux in Eqn. 4, it’s seen that the last term
disappears when QL = QR. Neglecting this last
term in the energy flux, the total enthalpy is split
into the total energy and pressure work, and these
terms are treated separately in the same manner
as the momentum equations. The modified scheme
then becomes

f̂± ·n = M±
n

 ρc
ρcu
ρce

±M±
n (2∓Mn)

 0
pn

pu · n


(5)

where M±
n is now based upon the relative Mach

number. The convective terms and acoustic terms
are treated consistently in all 3 equations of the
system. This numerical flux is similar to the WPS
scheme developed by Agarwal and Halt [25]

The modified scheme for the energy flux main-
tains the smoothness property of van Leer’s origi-
nal FVS. It is continuously-differentiable through
Mn = ±1, as can be seen in Fig. 1, where the
normalized energy flux ( f

ρc3 ) is plotted against the
Mach number. Both FVS schemes smoothly ap-
proach the asymptotic limit of pure upwinding.
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Figure 1: Normalized energy flux for the FVS schemes,
Eqns. 4 and 5. Both schemes are continuously-differentiable
through Mn = ±1

The geometry of the domain is expressed in
the moving coordinate system, and must be trans-
formed to the inertial system where the equations
of motion are specified. With a Cartesian scheme,
the faces of each computational cell have normals
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Figure 2: Variation of normal force coefficient with an-
gle of attack for oscillating NACA 0012. (M∞ = 0.755,
α(t) = 0.016 + 2.51 sin (2π62.5t)). The simulation uses 100
timesteps per complete cycle of the airfoil, and an isotropic
mesh with a finest resolution of 0.001 chord. Experimental
data from [26].

pointing in one of the Cartesian directions. These
normals all transform to the inertial system simi-
larly, and are simply pre-computed and stored prior
to each timestep.

The ALE formulation was utilized to simulate a
transonic NACA 0012 pitching airfoil (cf. AGARD
Report 702 [26]). The 2nd-order backward time-
integration scheme was used to compute the un-
steady motion starting from a converged steady-
state solution. The simulation uses 100 timesteps
per complete cycle of the airfoil, and an isotropic
mesh with a finest resolution of 0.001 chord. As
the airfoil oscillates, the shock transitions between
the upper and lower surfaces of the airfoil, and the
fluid state is path-dependent. This hysteresis is ev-
ident in the normal force history plotted in Fig. 2.
After an initial transient of approximately 1/2 cy-
cle, the solution is periodic. At a given angle of
attack, the normal force is multi-valued depending
upon whether the airfoil is pitching up or down.
The computed variation of normal force is in good
agreement with the experimental data.

4 Relative motion

As an introduction to computing moving bound-
aries with a non-body-fitted Cartesian scheme,
Fig. 3 contrasts three methods of moving geome-
try during a timestep: overset meshes, deforming
meshes, and the current Cartesian approach. Both
the overset and deforming mesh approaches use
body-fitted volume meshes. Overset approaches
(cf. [1, 27, 28]) are relatively easy to implement
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and efficient, as the volume mesh processing is done
a priori; only (lower-dimensional) boundary inter-
polations are updated at each step. Overset meth-
ods cannot maintain conservation across composite
grid boundaries without complex mesh construc-
tions in the overlap region. It also can be diffi-
cult and labor-intensive to maintain a compatible
spatial resolution across composite grids, and to
process the boundaries when components are close
together. With deforming meshes (cf. [3, 29, 30]),
the volume mesh deforms in response to the surface
motion, and after large deformations a volume re-
meshing and (often non-conservative) interpolation
to the new mesh is performed. Deforming-mesh ap-
proaches can be conservative over a timestep, mak-
ing them attractive for small deformations. How-
ever, for gross boundary motions associated with
large timesteps the quality of the difference sten-
cil can degrade severely due to this distortion. In
the current Cartesian approach, the moving bound-
ary “sweeps” through a fixed Eulerian mesh over
a timestep. The cells within the swept region of
the domain change volume and shape over the
timestep, and cells can appear or disappear (or
both) as well. The space-time geometry associated
with these swept cells is complicated, however it is
possible to formulate conservative schemes as the
boundary is impermeable, hence the flux through
all of the moving faces of a cell can easily be ap-
proximated. Formulating a non-body-fitted Carte-
sian scheme which maintains conservation for large
timesteps (large motions) of a moving boundary,
while still retaining efficiency and robustness is the
challenge for the current (and future) research.

4.1 Governing Equations

The motion of a solid body through an inviscid
fluid discretized by a fixed Cartesian mesh is gov-
erned by the same ALE set of conservation equa-
tions (a Lagrangian body moves through an Eule-
rian mesh) as the rigid-domain motion of the pre-
vious section,

d

dt

∫
V (t)

QdV = −
∮

S(t)

f · ndS S = ∂V (6)

f · n =

 ρun

ρunu + pn
ρune + pu · n


un = (u−w) · n

t = n

t = n+1

Composite Grid Boundary

(a) Overset

(b) Deforming Mesh

 

Uncut

Swept

Cut

 

t = n

t = n  +  1

(c) Cartesian

Figure 3: Approaches for moving boundary simulations.
Deforming mesh figures courtesy T. Baker [29].

5



Here w is the velocity of the moving boundary with
respect to the Eulerian frame, and is used to dif-
ferentiate from the rigid domain velocity uΩ. For
the current discussion the rigid-body motion of the
domain will be ignored, and only the relative mo-
tion will be formulated. No changes to the current
scheme are required when the rigid-domain motion
is superposed.

For a cell in a Cartesian mesh swept by a moving
boundary, Eqn. 6 can be simplified as the bound-
aries of the cell are fixed, hence w·n = 0, except for
the motion of the solid surface through the volume,
for which u · n = w · n holds (i.e. the convective
portion of the flux is zero through an impermeable
surface). Eqn. 6 is preferred over a simplified form
however, as it emphasizes the deforming-cell nature
of the problem.

Applying Liebniz’ rule to the left side of Eqn. 6
gives

d

dt

∫
V (t)

QdV =
∫

V (t)

∂Q
∂t

dV +
∮

S(t)

Qw ·ndS (7)

and the right-hand-side flux through the boundary
surface can be decomposed as

−
∮

S(t)

f · ndS = −
∮

S(t)

[Q (u−w) + P] · ndS

(8)

where P =

 0
pδ
pu

 is the acoustic portion of the

flux. Balancing terms gives∫
V (t)

∂Q
∂t

dV +
∮

S(t)

[Qu + P] · ndS = 0 (9)

Equation 9 can be recast into a space-time diver-
gence form by applying Gauss’s thereom to the spa-
tial volume integral. Defining the 4-D space-time
normal as ñ =

{
t̂,n

}
, where t̂ is the normal in

the time direction, n is the unit spatial normal,
and Q̃ = {Q,Qu + P}, the space-time conserva-
tion equation is ∮

Q̃ · ñdΩ = 0 (10)

where Ω is the boundary of the space-time volume.
Expanding Q̃ for clarity gives

Q̃ =


 ρ

ρu
ρe

 t̂,

 ρu
ρuu + pδ
ρeu + pu

n

 (11)

t = n

t = n+1

x

t

tc

W (closed 
boundary)

Qu + PQu + P
Q

Q t̂

1
w

n

Figure 4: One-dimensional space-time cell. The imperme-
able moving boundary (shown in red) crosses the fixed left
face of the cell at time tc. The impermeable boundary has
a normal with elements in both space and time.

Note that the velocity of the moving solid surface
no longer explicitly appears in Eqn. 10 as the mo-
tion of the boundaries is accounted for in the direc-
tion and “area” of the space-time boundary. Fig. 4
shows a 1-D space-time cell volume for a Carte-
sian cell as a moving-boundary crosses the left cell
face. The impermeable portion of the space-time
cell boundary (red boundary in Fig. 4 with slope
1/w) has a normal with elements in both space and
time, and is analogous to the role of the bound-
ary velocity in Eqn. 6. In essence, the mixed La-
grangian/Eulerian formulation of Eqn. 6 has been
converted to an Eulerian formulation in space-time.

Equations 6 and 10 explicitly satisfy the
so-called Geometric Conservation Law (GCL)
(cf. Thomas and Lombard [31]). The GCL is usu-
ally presented as

d

dt

∫
V (t)

dV =
∮

S(t)

w · ndS (12)

which states that the change in cell volume is equiv-
alent to the area swept by the moving boundary.
The supplementary information that the cell must
close,

∮
ndS = 0, is also required. The space-time

analog to the GCL is∮
ñdΩ = 0 (13)

which states that the space-time cell must close.
Whether numerical schemes are built for Eqn. 6

or Eqn. 10 is largely a matter of convenience, as
both are mathematically equivalent. In the cur-
rent work, Eqn. 6 is discretized directly, since it
maintains a similar formulation as the governing
equations for both static and rigid-domain motions.
This leverages the existing flow solver infrastruc-
ture for multigrid, dual-time, etc., for solving the

6



relative motion equations. Equation 10 is used in
the discussion for deriving or clarifying expressions,
and often provides more a more intuitive form.

4.2 One-dimensional Motion

While the form of Eqn. 6 is familiar, the space-
time geometry of the deforming cells becomes quite
complex for a boundary moving through a Carte-
sian mesh. In order to focus the discussion, the ex-
amples here begin with the motion in 1-D, which il-
lustrates many of the same properties as the multi-
dimensional equations. Points of interest or em-
phasis in expanding from 1-D to multiple dimen-
sions are discussed. Further, only discretizations
for the momentum equation are presented, these
being representative. Example simulations will be
presented for motions in 1, 2, and 3 dimensions in
Sec. 5.

4.2.1 CFLw < 1

A representative space-time cell for a one-
dimensional motion is shown in Fig. 5. In this
example the CFL number based upon the wall nor-
mal velocity is less than unity, so that the geome-
try moves less than one uncut hexahedron∗ during
the timestep. The velocity of the wall is not con-
stant over the timestep, hence the boundary motion
is non-planar in space-time. Linearizations of this
boundary motion will be discussed in Sec. 4.2.3.
While this example shows small motions by way of
an introduction, and the focus of the current work
is implicit schemes which allow large motions, small
motions still occur often in practice. An example
is pure rotation, where close to the axis of rotation
the body movement is small.

In Fig. 5a, the moving boundary remains in the
same hexahedra at tn and tn+1. If it is assumed
that the cell volume, V , is known exactly for all
cells in the domain at both time levels, then the
temporal contribution to the space-time flux can
be evaluated directly. A semi-discrete momentum

∗Borrowing from 3-D, the Cartesian mesh is said to be
made up of hexahedra in 1- and 2-D to maintain a common
nomenclature.

equation for cell j can then be written as†

(ρuV )n+1
j − (ρuV )n

j

+
∫ tn+1

tn

f̃R
j dΩ−

∫ tn+1

tn

f̃L
j dΩ = 0 (14)

where ∫
f̃dΩ =

∫
Q̃ · ñdΩ (15)

is an integral over space and time. The super-
scripts R and L in Eqn. 14 refer to the right and left
faces of the 1-D cell respectively. In the Cartesian
scheme the right boundary of cell j is fixed relative
to the inertial frame, and is not cut by the geom-
etry, hence it is evaluated with the same formula-
tion as in a static domain. The flux through the
left boundary, however, has contributions in both
the temporal and spatial directions. The tempo-
ral (convective) contribution is identically zero, as
u · n = w · n for an impermeable boundary. This
leaves only the pressure contribution to the moving-
boundary flux, which in the current 1-D example
becomes ∫ tn+1

tn

f̃L
j dΩ =

∫ tn+1

tn

pwdt (16)

where pw represents an approximation for the wall
pressure to some order of accuracy. In other words,
pressure acts only in the spatial directions, hence
the space-time area over which the surface pressure
acts is the projection along the spatial axes of the
moving wall area. In the vector notation of the
previous section(

Q̃ · ñ
)

w
= (P · n)w (17)

An example in multiple dimensions is shown in
Fig. 6 where a boundary moves through a group of
hexahedra in 2-D. Examining the space-time cell k,
the pressure acts on the projection of the moving
front along the −x and +y axes. This is the pro-
jection of the red triangular region in Fig. 6b along
the spatial coordinates.

For cells such as sketched in Fig. 5a, where the
solid boundary does not cross a cell vertex over
the timestep, it is unnecessary to calculate any
space-time geometry. Conservation is satisfied if
the change in cell volume is known, and the accu-
racy of the scheme for Eqn. 14 is determined by the

†Similar equations can be written for cell i behind the
moving front.
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t = n

t = n+1

i j

i j

x

t

(a) Behind
(Emerging)
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(dissappearing)

(b)

t = n

t = n+1

i j

i j’

x

t

k

k

tc
tc’

Figure 5: One-dimensional motions of an impermeable
boundary for motion less than the uncut hexahedron spacing
(CFLw < 1).

form of the flux quadrature through the space-time
areas.

Fig. 5b again shows a boundary motion which is
less than the uncut hexahedron spacing, however
in this example the boundary crosses a cell vertex
during the timestep. The cell labeled j disappears
ahead of the moving front, while the new cell j′

emerges behind the front. Examining the situation
ahead of the moving front first, the cell j does not
exist on the mesh at time level n + 1, hence noth-
ing needs to be computed in this cell. The cell k
is the first cell at time level n + 1 ahead of the
front. This cell receives a contribution from the
uncut face to the right, and two contributions on
the left: a flow contribution from tn to tc, the time
of the vertex crossing, and a solid wall contribu-
tion from tc to tn+1. In general, the flux through
a space-time face is thus composed of a flow por-
tion, Ωf , and a boundary contribution Ωw. The
semi-discrete equations for cell k are written as

(ρuV )n+1
k − (ρuV )n

k +
∫ tn+1

tn

f̃R
k dΩ

−
∫ tc

tn

f̃L
k dΩf −

∫ tn+1

tc

pwdt = 0 (18)

where the simplification for the solid wall contribu-
tion Ωw from tc to tn+1, Eqn. 16, has been made.
The flux entering cell k from tn to tc is identical to
the flux out of cell j. The semi-discrete conserva-

 

t = n  +  1 t = n

x

y

(a)

 

t = n  +  1 

t =
 n

xy t

 

j

k

(b)

Figure 6: 2-D cells swept by a moving boundary. The mov-
ing boundary is shaded in red, and begins at time level n in
hex j. The boundary both rotates and translates, moving in
the +x and −y directions over the timestep. At time level
n + 1 hex j is completely interior to the boundary, and cell
k is now cut.

tion equations for cell j are

− (ρuV )n
j +

∫ tc

tn

f̃R
j dΩf −

∫ tc

tn

pwdt = 0 (19)

solving for
∫

f̃R
j dΩf and substituting for

−
∫

f̃L
k dΩf in Eqn. 18 gives

(ρuV )n+1
k − (ρuV )n

k − (ρuV )n
j

+
∫ tn+1

tn

fRdΩ−
∫ tn+1

tn

pwdt = 0 (20)

as the semi-discrete equations for cell k in Fig. 5b.
Comparing with Eqn. 14, the only required modifi-
cation is a conservation correction from cell j. This
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“cell-merging” correction will be discussed further
in the next section.

The conversion of the flux in cell k from tn to tc

to a pressure contribution in Eqn. 20 is not general,
and in multiple-dimensions the spatial flux for a cell
ahead of the front will contain both wall and flow
contributions. This is seen in Fig. 6b, where the
cell j closes as the boundary moves, however cell k
ahead of the moving boundary has both wall and
flow components of the space-time flux through its
−x and +y space-time faces. In order for the flow
component of the flux to telescope completely to a
pressure component all of the spatial faces of a cell
must become closed.

Cell j′ in Fig. 5b emerges behind the body at tc
′
.

Again, the temporal (convective) contribution due
to the moving boundary is zero for an impermeable
boundary, and the only contribution due to pres-
sure is a projection of the wall along the spatial
axes. The left face of cell j′ receives a flux con-
tribution beginning at tc

′
so that the semi-discrete

governing equations for cell j′ are

(ρuV )n+1
j′ +

∫ tn+1

tc′
pwdt−

∫ tn+1

tc′
f̃L

j′dΩf = 0 (21)

Unlike the cell k ahead of the front, for cells behind
the moving boundary in 1-D it is necessary to de-
termine the time tc

′
in some manner. Various levels

of approximation for determining this vertex cross-
ing time will be outlined in Sec. 4.2.3, after the
current discussion is extended to arbitrarily-large
boundary motions in the next section.

4.2.2 Arbitrary CFL

The implicit framework of the current method
allows large geometry motions during a timestep,
such as shown in Fig. 7, again in 1-D. Hexahedra
such as j, k, and l in Fig. 7 are referred to as “time-
split” hexahedra, in a similar manner as spatially-
split hexahedra (cf. Aftosmis et al. [14]). The cells
behind the moving front are processed as described
in Eqn. 21 without modification. Examining the
cells ahead of the moving front which no longer ap-
pear at time level n+1, the semi-discrete equation
for cell m can be written as

(ρuV )n+1
m − (ρuV )n

m −
∑

ahead

(ρuV )n

+
∫ tn+1

tn

f̃R
mdΩ−

∫ tn+1

tn

pwdt = 0 (22)

t = n

t = n+1

x

t

i j’ k’ l’ m

t4

t3
t2

t1
t0

t5

i j k l m
Figure 7: One-dimensional motion of an impermeable
boundary for displacement greater than the uncut hexahe-
dron spacing (CFLw > 1).

The term
∑

ahead (ρuV )n represents a conservation
correction for cell m which is an agglomeration of
the conserved quantity in all the cells ahead of the
moving front. In 1-D, determining this conserva-
tion correction term is unambiguous. An example
of the complexity in multi-dimensions is shown in
Fig. 6b, where the correction from cell j must be
apportioned among its three neighbors (those shar-
ing the −y face, +x face, and the diagonal neighbor
k). This apportionment is similar to the flux redis-
tribution used by Pember et al. [32].

The “flux telescoping” used here is analogous to
the cell-merging technique used in the explicit, 2-
D simulations by Bayyuk et al. [10, 11]. In cell
merging the cells surrounding the moving body at
both time levels are physically merged into a single
cell, and then integrated forward in time. After the
timestep a reconstruction is performed back to the
unmerged mesh. Flux telescoping avoids the com-
plex constructions required to physically merge the
cells in multiple dimensions. Ahead of the front,
the cell merging and flux telescoping techniques
are mathematically equivalent, however behind the
front they are not necessarily the same. For ex-
ample, since the current method maintains the dis-
cretization through the timestep, a reconstruction
step is not required behind the front. This recon-
struction can be problematic for large boundary
motions and in multi-dimensional simulations.

4.2.3 Levels of Space-time
Geometry Approximation

As described in the previous sections, in general,
some details of the space-time geometry must be
determined in order to evaluate the spatial flux
terms. As a first step, the current article focuses
on two-time-level schemes with the flow and ge-
ometry states synchronous. These require only a
single computation of the cut-cell intersection per
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Figure 8: Isolated view of cell k from the two-dimensional
motion in Fig. 6.

timestep (time level n simply being saved from the
previous step). A similar approach staggers the ge-
ometry and fluid states in time [8], which also only
requires a single geometry intersection per step. As
described previously, the change in the conserved
quantity can be discretized directly since the cells
volumes are known at time levels n and n + 1 as
a result of the volume mesh generation. This sec-
tion describes levels of approximation in determin-
ing the required space-time geometry. These ap-
proximations affect the accuracy of the numerical
scheme, however conservation is maintained dis-
cretely regardless of how the space-time geometry
is approximated.

With the Cartesian approach, determining the
details of the moving boundary motion is not ex-
plicitly required, and non-planar wall motions can
be evaluated. Fig. 8 shows an isolated view of the
2-D cell k from Fig. 6. If the flow contributions
to the space-time area (Ωf ) are known, then the
wall contribution can be determined by using the
space-time GCL, Eqn. 13. Since Eqn. 13 is a vector
equation it can be applied to each Cartesian direc-
tion independently. Thus, enforcing closure (direc-
tionally) of the space-time cell determines the wall
contribution. In this manner it is not necessary
to explicitly linearize the wall motion in order to
determine the wall flux contribution, though with
most methods an implicit linearization does occur
as will be described.

The space-time GCL also simplifies evaluation of
the pressure work due to the moving boundary in

the energy equation. The pressure work term is
given by ∫

w

pu · ndΩw (23)

where here the integral is taken over the moving
boundary within the space-time cell. If the wall
pressure is approximated with a constant value pw,
and the substitution u·n = w·n for an impermeable
boundary is made, then Eqn. 23 becomes

pw

∫
w

w · ndΩw (24)

The integral
∫

w
w · ndΩ is the area swept by the

moving boundary over the timestep, which is equiv-
alent to the change in volume within the space-time
cell (cf. Eqn. 7). Hence the pressure work term can
be evaluated using the known cell volumes at n and
n + 1 as ∫

w

pu · ndΩw ≈ pw∆V (25)

Since the contribution to mass conservation due to
an impermeable boundary is identically zero, this
leaves only the pressure contribution in the momen-
tum equations yet to be evaluated. The next sec-
tions include different levels of approximation for
this pressure flux.

Sequential-static
The lowest-fidelity approach for the space-time

geometry is to simply ignore the time-dependent
nature of the problem, and solve the govern-
ing equations with a steady-state solver at each
time level. The steady-state solver can easily be
augmented with a moving-wall boundary condi-
tion. While this sequential-static approach ap-
pears crude, there are many applications having
timescales where this approach can be effective, and
examples can be found in the literature. The ad-
vantage is that no specialized time-dependent or
moving-body algorithms are required in order to
perform the simulations, however the applicability
and accuracy is limited (and unknown in general).

Staircase-in-time
The sequential-static simulation approach can be

improved by including a “history” of the fluid evo-
lution, i.e. including the time derivative of the fluid
state ∂Q

∂t . The simplest way to accomplish this is
to use a staircase approximation to the space-time
geometry, analogous to using a staircase geometry
in space. The geometry is considered fixed over a
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timestep [tn, tn+1], for example by holding the ge-
ometry in its state at tn, or tn+1/2, etc. In this
manner the cell volume is held constant, so that
a history of the motion is not provided, however
the correct moving-wall boundary condition is still
applied.

Linear-in-time
In the current scheme, the intersection of the ge-

ometry with a fixed Cartesian mesh is available at
time levels n and n + 1 so that a history of the
motion can be provided through the change in cell
volume over a timestep. The integral of the flux
through a face which is cut by the geometry during
the timestep must still be evaluated however. As
discussed in Sec. 4.2.1, in general the flux through
a space-time face is composed of both flow and wall
contributions∫ tn+1

tn

Q̃ · ñdΩ =
∫ tn+1

tn

Q̃ · ñdΩf

+
∫ tn+1

tn

Q̃ · ñdΩw (26)

For the fixed Cartesian flow faces the space-time in-
tegral simplifies as

(
Q̃ · ñ

)
f

= ([Qu + P] · n)f . In

general the integrals on the right-side in Eqn. 26 are
composed of multiple components. For example,
the flow contribution on the −x face in Fig. 8 can
be broken into two integrals; one up to the vertex
crossing and one after. The space-time flux terms
in Eqn. 26 can be evaluated with a backward-Euler
quadrature, i.e.∫ tn+1

tn

Q̃ · ñdΩ ≈ Q̂n+1 · ñfΩn+1
f

+ Q̂n+1
w · ñn+1

w Ωn+1
w (27)

with Q̂ a numerical approximation for Q̃ and
Ωn+1 = Sn+1∆t. In this manner the state of
the flow at time tn+1 is held over the entire
timestep [tn, tn+1]. A 2nd-order spatial approxima-
tion for Q̂n+1 is used. The impermeable moving-
wall boundary condition is implemented in the wall
flux term,

(
Q̃ · ñ

)
w

= (P · n)w (Eqn. 17). This
provides a straightforward means to approximate
the moving geometry and provide a history of the
wall motion. Example results using this backward-
Euler approximation will be presented in Sec. 5.
Comparisons of the sequential-static and backward-
Euler approximation for prescribed and 6-DOF mo-
tions are presented in [23] and [33] respectively.

An improvement can be made to the backward-
Euler approximation, essentially at no cost, by im-
proving the approximation to the space-time ge-
ometry. This approximate geometry approach is
motivated by the observation that it isn’t neces-
sary to determine the complete details of the space-
time geometry in order to implement a numeri-
cal scheme, it is only required to determine the
space-time area for the spatial flux terms. If this
area can be approximated in some manner (and an
appropriate quadrature determined for the flux),
an improvement in accuracy is possible. This ap-
proach is similar in spirit to using an agglomer-
ated wall within the cut-cell geometry, rather than
separately computing a contribution due to each
polygonal contribution from the surface triangula-
tion (cf. Aftosmis et al. [14]). A simple example is
to approximate the flow portion of the space-time
geometry using Ωf ≈ 1

2

(
Sn

f + Sn+1
f

)
∆t. The wall

portion of the space-time geometry is then deter-
mined by forcing the space-time cell to close, as dis-
cussed above. Combining this approximation with
a trapezoidal quadrature gives∫ tn+1

tn

Q̃ · ñdΩ ≈ 1
2

(
Q̂n ·ñSn + Q̂n+1 ·ñSn+1

)
f

∆t

+
(
Q̂ · ñ

)
w

Ω̂w (28)

Ω̂w represents the approximation to the wall space-
time area. More complex approximations for the
space-time geometry are also possible. Evaluating
the approximate space-time geometry approach for
3-D simulations is a focus of current research.

Full space-time intersection
The highest-fidelity approach is to determine the

actual space-time geometry. In 3-D, each spatial
face is a 2-D area which evolves to a 3-D volume in
space-time. If the motion of the moving boundary
is planar in space-time, or can be linearized, then
the same techniques which are used to determine
the cut-cell geometry for spatial meshes can be used
to determine the space-time geometry of each spa-
tial face. This requires six 3-D boundary/cell inter-
sections to be computed for each swept Cartesian
cell using methods similar to those in [14].

5 Numerical Results

The previous sections described moving-
boundaries within a Cartesian scheme, along
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with outlining implicit algorithms for solving
such problems. The current section presents
numerical results in one, two, and three dimen-
sions to demonstrate the implicit approach. All
results were obtained using the backward-Euler
scheme discussed in the previous section. Before
presenting the numerical results however, the
full three-dimensional implementation is briefly
discussed.

Currently, a fast global re-meshing is performed
at each timestep with the same volume mesh gener-
ation package as used for static simulations. Work
on incorporating solution and moving-geometry
adaptation capability, similar to the static, steady-
state method outlined in Aftosmis and Berger [34],
is in progress. Note that if the motion is prescribed
all the meshes can be processed a priori, and in
parallel. Integrating the deforming-cell governing
equations, Eqn. 6, for a representative cell j using
the backward-Euler scheme gives

(QV )n+1
j − (QV )n

j −
∑

ahead

(QV )n =

−∆t
∑ (

f̂ · n∆S
)n+1

j
(29)

The summation on the right side includes the
wall and flow contributions within cut cells. This
can be numerically integrated using the dual-time
scheme outlined in Sec. 2. The terms (QV )n

j and∑
ahead (QV )n become fixed source terms in the

dual-time scheme. (QV )n however is only available
on the mesh at time level n, while it is required on
the mesh at time level n + 1 in order to integrate
Eqn. 29. (QV )n is conservatively transferred from
the mesh at time level n to the new mesh at n + 1
external to the flow solver. The transfer of the solu-
tion between two volumes meshes takes advantage
of the space-filling-curve ordering of the cells in the
Cartesian meshes (cf. Ref. [15]). This allows the
transfer to be performed very efficiently, requiring
only two sweeps over the mesh cell list.

5.1 1-D Piston

A 1-D piston instantaneously moving at Mp =
2.0 into an initially quiescent fluid is simulated
to demonstrate the conservation of the scheme.
While the physical problem is one-dimensional, a
3-D mesh and solver are used, with suitable bound-
ary conditions to ensure no lateral flow develops.
The piston is originally centered at x = 0, and
has width 4∆x, where ∆x is the uncut hexahedron

spacing. The piston moves in the +x direction, and
a shock forms ahead of the piston, with an expan-
sion region to the rear (cf. Liepmann and Roshko
Sec. 3.2 [35]). If conservation is not maintained,
a shock will not form ahead of the piston, or will
have the wrong speed, as mass, momentum, and
energy continually “leak” through the piston face.
Numerical simulations moving the piston relative
to a fixed domain are compared with the exact an-
alytic solution. Figure 9 plots the pressure on the
compression-side face of the piston as a function of
time for two CFL numbers based upon the piston
velocity, CFLw = wp∆t

∆x = 1.0 and 10.0. After an
initial transient, both numerical simulations reach
the same pressure on the piston face, which is in
agreement with the analytic solution. The pressure
and density variation along the axis are plotted in
Fig. 10 after the piston has traveled 22CFLw, i.e.
the same number of timesteps for each simulation.
Both simulations predict the correct shock location
ahead of the traveling piston, and the agreement in
the expansion region behind the shock is likewise
very good. As expected, the shock is smeared over
several cells using the backward-Euler time integra-
tion scheme and remains monotone.
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Figure 9: Pressure on the compression-side face of a piston
moving at Mp = 2.0 into an initially quiescent fluid.

5.2 2-D Oscillating Airfoil

The oscillating NACA 0012 airfoil presented in
Sec. 3 is used to examine the behavior of the
relative-motion scheme in 2-D. The experimental
case was simulated using both the 2nd-order back-
ward scheme with the moving-domain ALE scheme
(cf. Sec. 3), and the 1st-order (in time) relative-
motion scheme. Both schemes utilize the same
spatially 2nd-order numerical flux formulation, and
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Figure 10: Density and pressure variation along the axis
for a piston moving at Mp = 2.0 into an initially quiescent
fluid. The mesh has a uniform spacing of ∆x = 0.25.

100 timesteps per cycle were used in both simula-
tions. The computed normal force variations with
angle of attack are shown in Fig. 11. Both simula-
tions capture the hysteresis caused by the unsteady
shock formation, and are in good agreement with
each other and the experimental data. The con-
vergence and stability properties of the ALE and
relative-motion formulations are similar for this
problem. Using two coarsening levels of multigrid,
each physical timestep converges roughly 2 orders
of magnitude in the L1-norm of density in 25 W-
cycles using the dual-time formulation.

Snapshots of the 2-D pressure contours com-
puted with the relative motion scheme are shown
in Fig. 12 for the NACA 0012 oscillating airfoil.
In general, the contours are smooth, with sharp
definition of the shock location, i.e. no numerical
artifacts from the relative motion scheme are visi-
ble. The hysteresis is evident comparing Fig. 12a
and Fig. 12c, where the airfoil passes through zero
angle of attack on the upstroke and downstroke re-
spectively. The sonic “bump” which forms behind
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Figure 11: Variation of normal force coefficient with angle
of attack for oscillating NACA 0012. Compare with pres-
sure contours in Fig. 12. (M∞ = 0.755, α(t) = 0.016 +
2.51 sin (2π62.5t)). The simulation uses 100 timesteps per
complete cycle of the airfoil, and an isotropic mesh with a
finest resolution of 0.001 chord. Experimental data from
[26].

the upstream shock as it moves from the lower to
upper surface is seen in frame (b). The maximum
shock strength is shown in Fig. 12d, and the lag
between maximum pitch angle and the angle of at-
tack which produces the maximum shock strength
is clear.

5.3 3-D Rolling Missile

In order to determine the conservation correction
term

∑
ahead (QV )n in multiple dimensions, it is

necessary to simulate in some manner the physical
convection process which is no longer discretized
with a large timestep. Determining the conserva-
tion correction in 3-D, and the manner in which to
distribute it, is an area of ongoing research. The
3-D simulations presented here do not include a
conservation correction.

The complete three-dimensional time-dependent
flow solver, using both a rigid-domain motion and
localized relative motion, is demonstrated by sim-
ulating a supersonic rolling-missile with dithering
canards. The complete details of these numeri-
cal simulations are contained in [23], and only a
brief overview will be presented here. The entire
computational domain rotates with the body roll
rate using the ALE formulation, while the canards
concurrently rotate relative to the body using the
relative-motion scheme. As the relative motion is
constrained to the region near the canards, all cells
away from this region do not require any special
treatment.

The missile body of Fig. 13 rotates at a constant
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(a) α = 0.08◦ ↑

(b) α = 1.47◦ ↑

(c) α = 0.02◦ ↓

(d) α = −1.84◦ ↑

Figure 12: Snapshots of pressure during oscillation of
NACA 0012 airfoil. Arrows in caption indicate whether
airfoil is pitching nose up, or nose down. Compare with
normal force variation in Fig. 11. (M∞ = 0.755, α(t) =
0.016 + 2.51 sin (2π62.5t)).

Figure 13: Rotating missile with dithering canards. The
entire computational domain rotates at the body roll rate
using the ALE formulation, while the canards rotate relative
to the body using the relative-motion scheme.

prescribed rate of 8.75 Hz. As the body rolls, the
two canards change positions synchronously to af-
fect controlled movements, such as yaw or pitch.
The computed force and moment variations with
roll angle for one complete roll cycle are presented
in Fig. 14, along with the canard deflection an-
gles. The simulations use a mesh containing 3.4M
cells, and a timestep which rolls the body 1◦ dur-
ing a step (360 steps/cycle). The computed re-
sults are compared to high-resolution (40M cells,
10,000 steps/cycle) overset, viscous simulations of
Nygaard and Meakin [36]. The current results com-
pare well with the viscous results in terms of both
roll-averaged values, and the roll-dependent varia-
tions. As expected, the viscous results predict a
consistent axial force increment compared with the
current inviscid results. The load variation with
roll angle shows the “dynamic overshoot” which
occurs when the canards instantaneously stop their
motion. Snapshots of the velocity magnitude at 5
axial cutting-planes along the body as the missile
rolls are presented in Fig. 15. The canards change
position from their maximum to minimum deflec-
tion through the three snapshots. The change in
shock pattern on the canards as they pitch down,
and the change in sense of rotation of the canard
tip vortices are both visible. The twist in the ca-
nard tip vortices as the body rotates is also evident,
though difficult to discern at this low spin rate.

Roll-averaged loads for the rolling missile with
dithering canards were measured experimentally
[37]. Numerical simulations are compared to the
experimental data in Table 2 for a body roll rate
of 18Hz using the experimentally-measured canard
dither schedule (cf. [23] for more details). The com-
puted forces and moments are all within the 95%
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CN CY Cl Cm Cn

Experiment 0.45 – 0.61 0.15 – 0.20 -0.036 – -0.019 -1.5 – -0.40 0.93 – 1.5
Computed 0.55 0.20 -0.034 -0.48 1.46

Table 2: Roll-averaged forces and moments for experimentally-measured dither schedule (M∞ = 1.6, α = 3.0◦, φ̇ = 18Hz).
Experimental range corresponds to a 95% confidence level [37].
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Figure 14: Force and moment comparison for rotating mis-
sile with dithering canards. The canard pitch angle is shown
as a solid black line with scale at right. Viscous simula-
tions by Nygaard and Meakin [36]. (M∞ = 1.6, α = 3.0◦,
φ̇ = 8.75Hz).

confidence level for the experimental data.

5.4 F/A-18C Store Separation

The final simulation example presented is a
coupled six-degree-of-freedom(6-DOF)/CFD tra-
jectory prediction of a U.S. Navy GBU-31/JDAM
separating from an F/A-18C. The complete details
of this simulation are contained in [33], and only a
summary is presented here. Time-dependent simu-
lations are coupled with a 6-DOF method to predict
the trajectory of the store after it is ejected from
the F/A-18 wing pylon. The trajectory is com-
puted through 0.45 sec., using a constant timestep

(a) φ = 45.5◦

(b) φ = 57.6◦

(c) φ = 71.8◦

Figure 15: Velocity magnitude contours for rotating missile
with dithering canards. Red corresponds to a large magni-
tude, and blue low. (M∞ = 1.6, α = 3.0◦, φ̇ = 8.75Hz).

15



of 0.0075 sec. This provides a CFL number based
upon the wall motion of 10-20 (depending upon the
store’s location in the trajectory). Figure 16 shows
surface pressure on the F/A-18 aircraft, along with
a composite image of the JDAM separation, at an
aircraft velocity of M∞ = 1.055. The store falls
downward under the influence of gravity, and con-
currently is pitching nose down and outboard. This
pitching of the store is due to the shock from the
leading edge of the wing which impinges directly on
the nose of the store. The computed trajectory is
in good agreement with the flight-test data, and is
commensurate with previous coupled 6-DOF/CFD
simulations for this configuration. Complete quan-
titative details of the trajectory are included in [33].
Figure 17 presents snapshots of the JDAM dur-
ing the trajectory simulation, along with cutting
planes through the computational volume mesh at
each step. The mesh automatically adapts to the
change in geometry, as well as coarsens after the
store has passed.

Figure 16: Surface pressure on the F/A-18C and GBU-
31/JDAM. A composite of the JDAM at several positions is
superimposed. (M∞ = 1.055, α = −0.65◦, γ = 44◦).

(a) t = 0.0 sec.

(b) t = 0.1 sec.

(c) t = 0.2 sec.

(d) t = 0.3 sec.

Figure 17: Cutting planes through the volume mesh during
JDAM separation. (M∞ = 1.055, α = −0.65◦, γ = 44◦).
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6 Summary

A method for simulating moving impermeable
boundaries within a fixed Cartesian mesh has
been developed, and initial results are demon-
strated. This scheme leverages the automated vol-
ume mesh generation process which has previously
been demonstrated for static geometries. A major
goal in this work is to limit the amount of geome-
try processing which is required during a complete
simulation, in order to obtain an efficient and ro-
bust scheme. This is especially relevant for three-
dimensional applications. An implicit dual-time
method is used for the time advance, which allows
a (large) timestep to be chosen based upon physical
considerations and not stability restrictions. This
limits the number of times the geometry must be
intersected with the Cartesian volume mesh over a
complete simulation. A general motion is decom-
posed into a rigid-body motion of the entire com-
putational domain, with a relative-body motion su-
perimposed. Since the rigid-domain motion can be
treated using an ALE formulation, this confines the
geometry processing only to the regions of relative
motion within the domain.

The details of the relative-motion scheme are
presented from a space-time analysis. This anal-
ysis covers the key ideas first in 1-D, and then dis-
cusses the complexity which arises when extending
the scheme to higher dimensions. Features of rela-
tive motion which are unique to Cartesian schemes
are highlighted. A hierarchy of approximations to
the boundary motion during a timestep are pre-
sented, along with preliminary results in one, two,
and three dimensions. As a first step, only schemes
which evaluate the geometry at two time-levels are
considered for the relative motion.

Acknowledgments

The authors would like to thank Dr. Tor Ny-
gaard of ELORET and Dr. Robert Meakin of the
U.S. Army AFDD for providing the viscous rolling-
missile results for comparison. Also, Dr. Tim
Baker of Princeton University provided permis-
sion to reuse the deforming mesh figures. Marsha
Berger was supported by AFOSR grant F19620-00-
0099 and DOE grants DE-FG02-00ER25053 and
DE-FC02-01ER25472.

References

[1] Meakin, R.L. and Suhs, N., “Unsteady Aero-
dynamic Simulation of Multiple Bodies in Rel-
ative Motion,” AIAA Paper 89-1996-CP, June
1989.

[2] Batina, J., “Unsteady Euler Algorithm with
Unstructured Dynamic Mesh for Complex Air-
craft Aeroelastic Analysis,” AIAA Paper 89-
1189, June 1989.
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